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Why Do the Quantum Observables Form
a Jordan Operator Algebra?
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The Jordan algebra structure of the bounded real quantum observables was recognized
already in the early days of quantum mechanics. While there are plausible reasons for
most parts of this structure, the existence of the distributive nonassociative multiplication
operation is hard to justify from a physical or statistical point of view. Considering the
non-Boolean extension of classical probabilities, presented in a recent paper, it is shown
in this paper that such a multiplication operation can be derived from certain properties
of the conditional probabilities and the observables, i.e., from postulates with a clear sta-
tistical interpretation. The well-known close relation between Jordan operator algebras
and C-algebras then provides the connection to the quantum-mechanical Hilbert space
formalism, thus resulting in a novel axiomatic approach to general quantum mechanics
that includes the types Il and Il von Neumann algebras.

KEY WORDS: foundations of quantum mechanics; quantum probability; quantum
logic; Jordan operator algebras.

1. INTRODUCTION

A non-Boolean extension of classical probabilities was presented in Niestegge
(2001). The main purpose of Niestegge (2001) was to elaborate on the interpretation
of the model and on some applications to quantum measurement. For that purpose,
it was sufficient to consider finitely additive probabilities.

In this paper, countably additive probabilities are needed to study observables
which are defined in an abstract way as the analogue of the classical random
variables. Itis shown that, under certain conditions, a multiplication opertion exists
on the system of bounded real-valued observables which form a Jordan operator
algebra then. The associativity of the multiplication operation is equivalent to
the classical case. Since almost all Jordan operator algebras can be represented
on a Hilbert space, the non-Boolean extension of the classical probabilities thus
provides an axiomatic access to quantum mechanics.

Other axiomatic approaches to quantum mechanics start from different pos-
tulates including either an orthomodular partial ordering on the system of events
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(called propostions in the quantum logical approaches; e.g., Birkhoff and von
Neumann, 1936; Piron, 1964;dktand Pulmanna;'1991; Pulmann@;1998) or
a distributive multiplication operation on the system of bounded real observables
(e.g., Jordawet al, 1934; Segal, 1947; Sherman, 1956) or both (e.g., Pulmannov”
1998). Postulating the existence of the distributive multiplication operation is hard
to justify from a physical or statistical point of view (when using the so-called Segal
product (Pulmannay,”1998; Segal, 1947), the distributivity becomes a problem
as pointed out in Sherman (1956)), and the purely logical approaches are able
neither to rule out some physically irrelevant cases (Keller, 1980) nor to cover the
physically relevant types Il and 11l von Neumann algebras (which do not contain
the minimal events needed for the geometrical methods these approaches use).
The approach of this paper assumes a rather weak structure for the system of
events (with a simple orthogonality relation instead of an orthomodular partial or-
dering); more important are certain statistically interpretable properties, postulated
for the conditional probabilities and the observables, where the distributive multi-
plication operation can be derived from. This approach is closer to Kolmogorov’s
measure-theorectic access to classical probability theory than the other approaches.
Moreover, the types Il and lll cases are included and the physically irrelevant cases
discovered in Keller (1980) are excluded.

2. NON-BOOLEAN PROBABILITIES

An orthospacdNiestegge, 2001) is a s€twith distinguished elements 0 and
I, arelationl and a partial binary operation such that foD, E, F € &:

(OS)ELF=F_LE

(OS2)E + F isdefined forE L F,andE+ F =F + E

(OS3) DLE,DLF,ELF=D.lE+F,FLD+EandD+(E+F) =
(D+E)+F

(OS4)0LEandE+O=EforallE €&

(OS5) For everyE € £ there exists a uniqué&’ € £ such thatE 1L E’ and
E+E =1

(OS6)E L F' < There exists ® € £ suchthate L D andE + D = F

We say ‘E and F are orthogonat for E L F. (0S2,4,5) imply that 0=
I'andE” = E for E € £. A further relation< is defined o€ via E < F &
ELF'(E,F €&). ThenE < F ifand only if £ contains an elemer such that
D 1L EandF = E + D. Moreover, we have & E < I forall E € £.

The relation< is reflexive by (OS4) or (OS5), but is not a partial ordering
since itis neither antisymmetric nor transitive in general. Therefore, the orthospace
structure is far away from what is usually considered a quantum logic and a rather
weak structure the only purpose of which is to provide the opportunity to define
states as an analogue of the classical probability measures. Further postulates
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concerning the states and conditional probabilities will be considered below and
will then provide a sufficiently rich structure.

A stateon an orthospacé is a mapu : £ — [0, 1] such thatu = 1 and
W(E + F) = u(E) + w(F) for all orthogonal pair&, F € £. Thenu(0) = 0, and
w is additive for each finite family of pairwise orthogonal elementg.ifOS6)
ensures that(E) < u(F) forE < F.

Definition 2.1. (i) A o-orthospacds an orthospacé such thaty -, E, is de-
fined in & for every sequence of mutually orthogonal evehts (ii) A state u
on ac-orthospacet is calledo-additiveif (3 0> En) = > oo, 1(En) for every
sequence of mutually orthogonal evefts

The elementE € £ are interpreted asventsand will be called so in the
following. Orthogonality means that the events exclude each other. The (only
partially defined) operation- is interpreted as ther connection of mutually
exclusive eventst’ is thenegationof E. For a stateu, the interpretation of the
real numbep(E) is that of theprobability of the eventE in the stateu.

If uis astate on an orthospa€andE € £ with (E) > 0 and ifv is another
state such that(F) = w(F)/u(E) holds forallF € £with F < E, thenv is called
aconditional probabilityof 1 underE. Essential shortcomings of this conditional
probability are that such a statemay not exist at all and that, if such a state
exists, it may not be unique. The requirement that unique conditional probabilities
must exist guides us to the following definition ®UCP spacegwhich is the
adaptation of the UCP spaces considered in Niestegge (20843ddlitive states).

Definition 2.2. A o-UCP spacés ac -orthospace satisfying the following two
axioms:

(UCL) If E, F € £, andE # F, then there is @ -additive statew with u(E) #
w(F).

(UC2) For eaclr-additive state: andE € £ with w(E) > 0, there exists one and
only onec -additive conditional probability.e of i« underE.

we(F) is the probability of the everft in the stateu after the evenE has
been observed. Using the same terminology as in mathematical probability theory,
we will also writew (F | E) for wg(F) in the sequel. I (E) = 1, thenug = 1 and
wW(FIE) = u(F)forall F € £.

There is as-additive stateu with ©(E) = 1 for each elemenE £ 0 in a
0-UCP space, since from (UC1) we getrastatev with v(E) # 0, and then
chooseu = vg.

(UC1) implies the uniqueness dd in (OS6): E+ Dy =F = E + Dy,
thenu(E) + n(D1) = u(F) = w(E) + n(D>) for all o-additive stateg, hence
u(D1) = u(Dy) for all o-additive stateg andD; = D».
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Moreover, ifE < F andF < E for E, F € &£, thenE = F; i.e., the rela-
tion < is antisymmetric: Iff = E + D; andE = F + Dy, thenu(F) = w(E) +
w(D1) = u(F) + u(Dy) + u(Dy), thereforeu(D;) = (D) = Oforallo-additive
statest, andD; = D, = 0 by (UC1). Note that the relation need not be transitive
so far. FurthermoreE lE < E1T1< E=0. (f ELE,thenELE+E =1
by (0S3,5). IfE L1, thenE L. 0'andE’ L 0,i.e.E < 0and0< E, henceE =0.)

In Niestegge (2001), the conceptsspétistical predictability(state indepen-
dence of the conditional probability) awdmpatibilityhave been introduced. The
adaptation of these conceptsaeJCP spaces is straightforward, but not needed
for the purpose of this paper.

3. OBSERVABLES

An observable is supposed to be the analogue of a classical random variable
which is a measurable point functidnbetween two measurable spaces. With the
o-UCP space model, there are no points, but only events. A closer look at classical
probability theory shows that the mapallocating the event ~(E) to the evenE
is more essential to the theory thaitself. The mapX isahomomorphism between
theo-algebras of events. An observable is therefore defined as a homomorphism
between twar -orthospaces; similar but less general definitions of observables can
be found in the literature (Gudder, 1979aRtind Pulmann@;1991; Varadarajan,
1968/70).

Definition 3.1. A map X from ac-orthospace to ac-orthospace is called an
observablef

@ X0 =1,
(i) X(E)L X(F)in & for all pairsk, F € F with E L F, and
(i) X(Qpy Fn) = X _noq X(Fn) for every sequence of mutually orthogonal
eventsF, in F.

Then X(0) = 0 and X(F’') = X(F) for everyF € F. If u is ac-additive
state on€, ao-additive statg.” is defined onF via uX(F) := w(X(F)); u* is
called the distribution oX undery.

The classicab -algebras and particularly the systéiof Borel-measurable
sets inR arec-orthospaces. Iff = B, the observabl&:B — £ is called areal-
valuedor R-valuedobservable 08, althoughitis a map fror3to £. The reason is
that we want to keep the notation in line with what is called a real-valued classical
random variable. Such an observalflés boundedf

IX]| ;= inf{r > O|X([—r,r]) =1}

is finite. Now letOy (£, R) denote the set of all bound@dvalued observables on
£. Theexpectation valuef a real-valued observabl¢ in ao-additive statg. on
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£ is defined as
Exp, (X) = /t du*,

if the measure integral exists. The integral always exisksig bounded.

With a real-valued observabk and a measurable function: R — R, an-
other real-valued observabeis defined viay (B) := X(f ~1(B)) for B € B; then
Exp,(Y) := [ f(t) duX for anyo-additive statg: on£. This observabl is de-
noted byf (X) inthe sequel. If f| < r for somer > 0, then|| f (X)|| < r. ThusXX
andsXare defined for any nonnegative integand any real number and we have
XK = X[k and||s X|| = |s| | X||. An observablee € Oy(E, R) is allocated to
eachE e £ via

E for 1e B and 0¢ B

E' for 1¢ B and 0e B
xe(B) =

0 for 1¢ B and 0¢ B

I for 1e B and 0e B

for B € B. Then Exp,(xe) = 1(E) for everyo-additive statg. on&. Moreover,
if Xis a real-valued obervable, thggg) = 18(X), whereB is any Borel set and
I 5 is the indicator function withg(t) = 1 fort € B andlg(t) = O fort ¢ B.

The spectral measure of a self-adjoint operator on a complex or real Hilbert
space provides a real-valued observable in the sense of the above definition. The
one-to-one correspondence between the self-adjoint operators and their spectral
measures is the reason why quantum-mechanical observables are usually under-
stood as operators.

4. THREE FURTHER AXIOMS

A classicalo-algebra is a-UCP space withu(E|F)u(F) = w(ENF) =
w(F|E)u(E). In the quantum-mechanical Hilbert space model, we he\ig F)
u(F) = Exp,(FEF) # Exp,(EFE) = u(F|E)u(E) (see Niestegge, 2001). Inboth
cases, however, the conditional probabilities satisfy the equatignF)u(F) +
W(E'NF)u(F) = w(FIE)u(E) + w(F'|E")u(E"), which becomes our first axiom
(A1) (see below).

Moreover, in both casgs(E|F)u(F) is identical with the expectation value
of a certain observable, this is the evéht) F in the first case and the (spec-
tral measure of the) operatBEF in the second case. This motivates the second
axiom (A2).

In the last sectionX* andsX could be defined for a real-valued observable
X, but the sum of two real-valued observableandyY is not defined. An addition
operation for observables is important for physical as well as mathematical reasons
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(e.g., for the formulation of a law of large numbers or a central limit theorem).
This brings us to the third axiom (A3).
Let & be ac-UCP space.

(AL) w(EIF)u(F) + n(E'|F)n(F’) = w(FIE)u(E) + u(F'|Eu(E’) for all
eventsk andF and allo-additive stateg. on&.

(A2) For each pair of eventE andF there is a bounded real-valued observable
Ue(F) such thatu(F|E)w(E) = Exp,(Ue(F)) for every o-additive statex
oné.

(A3) For each pair of bounded real-valued observat{eandY there is one
and only one bounded real-valued observable Y such that Exp(X + Y) =
Exp, (X) + Exp,(Y) for everyo-additive state. on €.

Note that the sum of boundé®ivalued observables (spectral measures of
bounded self-adjoint operators) exists in the quantum-mechanical model, but that
the sum of bounde@-valued observables (spectral measures of bounded normal
operators) does not exist (since the sum of normal operators is not normal unless the
operators commute). This means thatfihealued observables play a distinguished
role.

In the next three sections of this paper, it will now be proved step by step that
the system of bounded real-valued observables, equipped with-thjgeration
and a multiplication operation that will be defined later on, forms a Jordan algebra.

5. THE ADDITION OPERATION

The axiom (A3) implies that the- operation orOy (£, R) is commutative as
well as associative. ThuS, (£, R) becomes a real-linear space. The zero element
is0 = xo. Moreover, ifX, Y € Oy(€, R) are such that Ex(X) = Exp, (Y) holds
for all o-additive stateg. on &, thenX =Y (which also implies the uniqueness
of Ug(F) when (A2) and (A3) both hold). 1§, f:R — R are bounded measur-
able functions witth := g + f, thenh(X) = g(X) + f(X) for every real-valued
observableX.

Lemma. 5.1. Let& be ac-UCP space.

() I1X]l = sud]| Exp,(X)| : uis ac-additive state od’} for X € Op(E, R).
(ii) If (A3) holds, then| X + Y| < [IX|| + [[Y]| and || X?|| < | X? 4 Y?]| for
X, Y € Op(€, R).

Proof: (i) Obviously|Exp, (X)| < [ X] for all 0 -additive stateg on&. Lete >
0. Withs := || X|| then eitheiX([s — &, S]) # 0 or X([—s, —s + ¢]) # 0 and there
is a o-additive state x on & such that eitheru*([s—e,s))=1 or
p*([—s, —s + €]) = 1. In both cases we géExp, (X)| > || X]|| — &. (ii) follows
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immediately from (i). Use Exp(Y?) = [s?du" > 0 for the second inequality.
m

Now let £ be ac-UCP space that satisfies (A3). Thea.r = xe + xr
for any two orthogonal events andF in £. If E; (1 < j < k) arek mutually
orthogonal events ifi, the observable

K
D tixe; € Op(€,R)
=1

with t; e R is calledprimitive. It is identical with the observabl¥ defined via

> E for a Borel setB with 0 ¢ B,
teB
XB) =1,k \/ .
<Z Ej> + Y E foraBorel seB with 0 € B.
j=1 teB

Therefore

=maxX|tj| : 1< j <k}

k
|2
j=1
Note that the sum of two primitive observables is not primitive in general.

Lemma. 5.2. Let& be ac-UCP space wher@A3) holds.

(i) The primitive observables are dense inthe normed linear spate ®).
(i) {X € Op(&,R): IX] < 1} is the closed convex hull ¢fe — xr : E,
Fefl.

Proof: (i) Let X € Op(&, R) with r := || X|. Now approximate the function
f(s) := s on [—r, r] uniformly by a sequence of step functiorig with a finite
number of steps each; theiR(X) is a sequence of primitive observables with
|X — fo(X)|| = 0. (ii) From Lemma 5.1 (i) we geffxe — xrll < 1, and there-
fore || X|| < 1 for every X in the closed convex hull. Now assuri¥| < 1 and
approximate the functioffi(s) := s on [—1, 1] uniformly by a sequence of func-
tions f,, that are convex combinations of functions with values#i, 0, 1. Then
fa(X) is a sequence of observables in the convex hullygf — xr: E, F € £}
and converges tX. O

6. THE MULTIPLICATION OPERATION

Postulating the existence of the product of tRevalued observableX and
Y inthe same way as the sumis not possible since, BX)¥) = Exp, (X)Exp,(Y)
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does not even hold in the classical case (unksndY are uncorrelated under
). However, a multiplication operation will now be derived from (A1) and (A2).

Theorem 6.1. Let& be ac-UCP space that satisfi¢d1), (A2), and(A3). Then
there is a unigue commutative multiplication operatiomith unit element := x;
on G,(&, R) such that

(i) Xo(sY+tZ)=s(XoY)+t(XoZ) for X,Y,Z e Op(E,R) and
s, tek,

i)y 1X oY < IXIIYI] for X, Y € Op(E, R),

(i) xeoxe=xeforE e &, andyg o xp =0for E, F € £ with E_L F.

Note that the multiplication operationis not associative in general.

Proof: (1) LetE € £. From (A2) we gelUg(E) = xg = Ug(l) = Ug(E), and
Ue(F) =0 for F € £ with E L F. We first define a certain extension Ot to
linear combinations of thgg (F € £):

Ue(Y) =) sUe(R) € Op(€, R) for Y = 3 s xx.
=1 =1

Then
m
Exp,Ue(Y) = u(E) Y sue(R) = w(E)Exp,. Y
=1
for anyo -additive statg. on&. ThereforelJg is well-defined (i.e., independent of
the special choice of the linear combination representirand linear on the linear

hull of {xg|F € £}. Moreover, with Lemma 5.1 (i), we gdtGE(Y)H < IY|l. We
now definexg o Y for E € £ andY in the linear hull of{xg |F € £} via:

xe oY = 2(Y +0ev) - Oev)).

This immediately implies (iii), and moreoveyg c 0 = 0 aswell agyg o I = ye.
Furthermoreyg o Y is linear and continuous i (with E fixed). (2) From (A1),
we getforg, F € &:

Ug(F) + Ue/(F') = Ur(E) + Ur (E')
and then
2xe o xr = xr + Ug(F) — Ug/(F)
= xr + Ur(E) + Up/(E") — Ug/(F") — Ue/(F)
= xr +Ur(E) + xr — Ur/(E) — x&
= xe + Ur(E) — Ur(E)

= 2XF © XE-
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(3) We now defineX o Y for both X andY in the linear hull of{ xg|F € £} with
X = ZT:ltJ'XEj as

k
XoY =) tj(xe oY)
j=1

We have to make it sure that o Y does not depend on the special choice of the
linear combination representing. However, in the cas¥ = xg with F € £, we

get from (2):X o xg = xF o X, which is well defined by (1). Therefoné o Y is
well-definedandX o Y = Y o X for all Y that are linear combinations of sugh.
Moreover,X o Y is continuous and linear ivf with X fixed as well as inX with

Y fixed. We then get foEy, E; € &:

1.~ ~ ~ ~
(X, — Xg)) 0 Y = E(UEl(Y) — Ug;(Y) + Ug,(Y) — Ugy(Y)).
Hence

I(xe, = xe) o Y1 = 2]V,
and, using Lemma 5.2 (ii):
X oY < 20X

By Lemma 5.2, the linear hull dfxg|E € £} is dense inOy (&, R), and the mul-
tiplication operatior has a unique continuous extension@g(&, R) such that
(i) and (iii) are satisfied, buK o Y may lie in the completion of0,(£, R) and
not in Oy(&, R) itself for X, Y € Oy(&, R). (4) For a primitive observabl¥, the
productX o X is identical withX? defined earlier ag (X) with f(s) := s2. This
follows from (i) and (iii). Therefore X o X = X2 for all X € Op(&, R); use the
same approximation o by primitive observables as in the proof of Lemma 5.2
(i) and the continuity of the multiplication operationThen

1 1 1
XoY = 5(x+\()2— Ex2— E\(26 Opb(&, R)

for X, Y € Op(&, R). Furthermore, the multiplication operatiors uniquely deter-
mined by this equation. (5) Since we have E@¢?) = [ s°du* > 0, the Cauchy—
Schwarz inequality holds for the bilinear fonf) Y — Exp, (X o Y) onOy(€, R),
wherep is anyo-additive state oi. Then forX, Y € Op(&, R):

(Exp, (X 0 Y))? < Exp, (X?)Exp,(Y?),
and by Lemma 5.1 (i):
IX o YIIZ < IXAIIY2 = IXIPNY I3,

from which we get (ii). O
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With the multiplication operation of Theorem 6.1, we haiX) o g(X) =
h(X) with h := fgfor any real-valued observabland any bounded measurable
functionsf, g onR. This can easily be proved by applying the equati®h2y =
(X+Y)2 - X2-Y2

One may decline to take this equation as a definition of the pragduging
the definition of the square from section 3 and to drop (Al) and (A2) as well as
(UC2). Thisis the so-called Segal product (Pulmarmd@98; Segal, 1947). Then,
however, the distributive law ((i) in 6.1) cannot be proved (Sherman, 1956), which
is the reason why other authors postulate the distributive law for the product as
an extra axiom although a physically or statistically plausible justification for this
axiom is hard to find.

7. THE JORDAN PROPERTY

A Jordan algebra satisfies the conditlén (X2 o Y) = X2 o (X o Y) for all
elementsX andY inthe algebra. If areal algebra has a finite dimension and satisfies
some conditions which hold i®,(€, R), the Jordan condition becomes equivalent
to the condition that each element of the algebra lies in an associative subalgebra
(Jordanet al, 1934). InOy(&, R), an associative subalgebra containing a given
X is {f(X): f is a bounded measurable function®&h Therefore,0y(&, R) is
a Jordan algebra if its dimension is finite. We shall now show @€, R) is
a Jordan algebra in the infinite-dimensional case as well, using the methods of
Jordaret al. (1934) where applicable. In Jordahal. (1934), the finite dimension
is mainly needed to derive a spectral theorem. We are in the lucky situation to
have such a theorem already; this is Lemma 5.2 (i). Since observables are a kind
of abstract spectral measures, spectral theory becomes quite simple in our case.

Lemma. 7.1. Under the assumptions of Theorem 6.1, the identity (xr o
Y) = xr o (xe o Y) holds for any two orthogonal events E € £ and any Ye
Op(&, R); i.e. xg and xg operator-commute (Hanche-Olsen and Stgrmer, 1984).

For the proof of this lemma it is referred to Jordainal. (1934). Op(£, R)
satisfies all the assumptions needed there, and the finite dimension is not relevant
for this proof.

Theorem 7.2. Under the assumptions of Theorem 6.1,(R) is a Jordan
algebra.

Proof: Because of Lemma 5.2 (i), it is sufficient to prove the idenity (X2 o
Y) = X%0 (X oY) for X,Y e Op(&, R) with X being primitive. We therefore

consider
n
X =Y txg
k=1
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with mutually orthogonal events, andty € R(1 < k < n). Then by Lemma 7.1,

n

n n n
X?o(XoY) =Y Y ttixg olxg oY) =Y > tixgo(xg oY)

k=1 I=1 k=1 =1

= Xo(X?0Y). O

The mapE — xg provides an isomorphism forghonto the system of idem-
potent elements i, (€, R), the completion of which becomes a so-called JB
algebra (Hanche-Olsen and Stgrmer, 1984). This finally implies<hiatan or-
thomodular partial ordering. Moreover, since almost all JB algebras can be rep-
resented as a Jordan algebra of self-adjoint operators on a Hilbert space (Alfsen
et al, 1978; Hanche-Olsen and Stgrmer, 1984), we thus arrive very closely at the
standard Hilbert space model of guantum mechanics.

If the multiplication operation oOp(&, R) is associative, the®, (&, R) is
isomorphic to an algebra of real-valued functions (Hanche-Olsen and Stgrmer,
1984) ancf is a (c-complete) Boolean lattice, i.e., an associative multiplication
operation reduces to the classical case.

8. CONCLUSIONS AND REMARKS

We have seen that the-UCP spaces and the axioms (Al), (A2), and (A3)
presented above provide an axiomatic approach to quantum mechanics, incorpo-
rating a statistical interpretation from the very beginning and leading to real Jordan
algebras. The structure theory of Jordan operator algebras finally provides the link
to the conventional Hilbert space Gr-/ W*-formalism of quantum mechanics.

This approach includes the physically relevant types Il and Ill von Neumann
algebras which are not covered by the purely logical approaches and it excludes
some physically irrelevant cases that the purely logical approaches are unable to
rule out. Itis closer to Kolmogorov's measure-theorectic access to classical proba-
bility theory than other approaches. The existence of the distributive multiplication
operation for the bounded real observables need not be postulated without a satisfy-
ing justification, but is derived from other postulates concerning certain properties
of the conditional probabilities and observables.

The connection between conditional probabilities (although the definition
does not coincide with our one) and real Jordan algebras was discovered by Gunson
(1967). His results were improved by Guz (1981), but only the finite events (sum of
a finite number of orthogonal minimal events) and their orthogonal complements
could be embedded in a Jordan algebra.

Guz also proposed an algebraic approach where 2 of his 11 axioms coincide
with (A1) and (A2). Axiom (Al) appeared for the first time and its possible inter-
pretation is discussed in (Alfsen and Shultz, 1979). Better known is axiom (A3)
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which is the major ingredient for the definition of the so-cakern logicgPtak
and Pulmannaw, 1991).
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