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The Jordan algebra structure of the bounded real quantum observables was recognized
already in the early days of quantum mechanics. While there are plausible reasons for
most parts of this structure, the existence of the distributive nonassociative multiplication
operation is hard to justify from a physical or statistical point of view. Considering the
non-Boolean extension of classical probabilities, presented in a recent paper, it is shown
in this paper that such a multiplication operation can be derived from certain properties
of the conditional probabilities and the observables, i.e., from postulates with a clear sta-
tistical interpretation. The well-known close relation between Jordan operator algebras
and C∗-algebras then provides the connection to the quantum-mechanical Hilbert space
formalism, thus resulting in a novel axiomatic approach to general quantum mechanics
that includes the types II and III von Neumann algebras.

KEY WORDS: foundations of quantum mechanics; quantum probability; quantum
logic; Jordan operator algebras.

1. INTRODUCTION

A non-Boolean extension of classical probabilities was presented in Niestegge
(2001). The main purpose of Niestegge (2001) was to elaborate on the interpretation
of the model and on some applications to quantum measurement. For that purpose,
it was sufficient to consider finitely additive probabilities.

In this paper, countably additive probabilities are needed to study observables
which are defined in an abstract way as the analogue of the classical random
variables. It is shown that, under certain conditions, a multiplication opertion exists
on the system of bounded real-valued observables which form a Jordan operator
algebra then. The associativity of the multiplication operation is equivalent to
the classical case. Since almost all Jordan operator algebras can be represented
on a Hilbert space, the non-Boolean extension of the classical probabilities thus
provides an axiomatic access to quantum mechanics.

Other axiomatic approaches to quantum mechanics start from different pos-
tulates including either an orthomodular partial ordering on the system of events
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(called propostions in the quantum logical approaches; e.g., Birkhoff and von
Neumann, 1936; Piron, 1964; Pt´ak and Pulmannov´a, 1991; Pulmannov´a, 1998) or
a distributive multiplication operation on the system of bounded real observables
(e.g., Jordanet al., 1934; Segal, 1947; Sherman, 1956) or both (e.g., Pulmannov´a,
1998). Postulating the existence of the distributive multiplication operation is hard
to justify from a physical or statistical point of view (when using the so-called Segal
product (Pulmannov´a, 1998; Segal, 1947), the distributivity becomes a problem
as pointed out in Sherman (1956)), and the purely logical approaches are able
neither to rule out some physically irrelevant cases (Keller, 1980) nor to cover the
physically relevant types II and III von Neumann algebras (which do not contain
the minimal events needed for the geometrical methods these approaches use).

The approach of this paper assumes a rather weak structure for the system of
events (with a simple orthogonality relation instead of an orthomodular partial or-
dering); more important are certain statistically interpretable properties, postulated
for the conditional probabilities and the observables, where the distributive multi-
plication operation can be derived from. This approach is closer to Kolmogorov’s
measure-theorectic access to classical probability theory than the other approaches.
Moreover, the types II and III cases are included and the physically irrelevant cases
discovered in Keller (1980) are excluded.

2. NON-BOOLEAN PROBABILITIES

An orthospace(Niestegge, 2001) is a setE with distinguished elements 0 and
I, a relation⊥ and a partial binary operation+ such that forD, E, F ∈ E :

(OS1)E⊥ F ⇒ F ⊥ E
(OS2)E + F is defined forE⊥ F , andE + F = F + E
(OS3) D⊥ E, D⊥ F, E⊥ F ⇒ D⊥ E + F, F ⊥ D + E and D + (E + F) =

(D + E)+ F
(OS4) 0⊥ E andE + 0= E for all E ∈ E
(OS5) For everyE ∈ E there exists a uniqueE′ ∈ E such thatE⊥ E′ and

E + E′ = I
(OS6)E⊥ F ′ ⇔ There exists aD ∈ E such thatE⊥ D andE + D = F

We say “E and F are orthogonal” for E⊥ F . (OS2,4,5) imply that 0′ =
I and E′′ = E for E ∈ E . A further relation≺ is defined onE via E ≺ F :⇔
E⊥ F ′ (E, F ∈ E). ThenE ≺ F if and only if E contains an elementD such that
D⊥ E andF = E + D. Moreover, we have 0≺ E ≺ I for all E ∈ E .

The relation≺ is reflexive by (OS4) or (OS5), but is not a partial ordering
since it is neither antisymmetric nor transitive in general. Therefore, the orthospace
structure is far away from what is usually considered a quantum logic and a rather
weak structure the only purpose of which is to provide the opportunity to define
states as an analogue of the classical probability measures. Further postulates
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concerning the states and conditional probabilities will be considered below and
will then provide a sufficiently rich structure.

A stateon an orthospaceE is a mapµ : E → [0, 1] such thatµ = 1 and
µ(E + F) = µ(E)+ µ(F) for all orthogonal pairsE, F ∈ E . Thenµ(0)= 0, and
µ is additive for each finite family of pairwise orthogonal elements inE . (OS6)
ensures thatµ(E) ≤ µ(F) for E ≺ F .

Definition 2.1. (i) A σ -orthospaceis an orthospaceE such that
∑∞

n=1 En is de-
fined in E for every sequence of mutually orthogonal eventsEn. (ii) A stateµ
on aσ -orthospaceE is calledσ -additiveif µ(

∑∞
n=1 En) =∑∞n=1µ(En) for every

sequence of mutually orthogonal eventsEn.

The elementsE ∈ E are interpreted aseventsand will be called so in the
following. Orthogonality means that the events exclude each other. The (only
partially defined) operation+ is interpreted as theor connection of mutually
exclusive events,E′ is thenegationof E. For a stateµ, the interpretation of the
real numberµ(E) is that of theprobabilityof the eventE in the stateµ.

If µ is a state on an orthospaceE andE ∈ E withµ(E) > 0 and ifν is another
state such thatν(F) = µ(F)/µ(E) holds for allF ∈ E with F ≺ E, thenν is called
aconditional probabilityof µ underE. Essential shortcomings of this conditional
probability are that such a stateν may not exist at all and that, if such a state
exists, it may not be unique. The requirement that unique conditional probabilities
must exist guides us to the following definition ofσ -UCP spaces(which is the
adaptation of the UCP spaces considered in Niestegge (2001) toσ -additive states).

Definition 2.2. A σ -UCP spaceis aσ -orthospaceE satisfying the following two
axioms:

(UC1) If E, F ∈ E , andE 6= F , then there is aσ -additive stateµ with µ(E) 6=
µ(F).

(UC2) For eachσ -additive stateµ andE ∈ E with µ(E) > 0, there exists one and
only oneσ -additive conditional probabilityµE of µ underE.

µE(F) is the probability of the eventF in the stateµ after the eventE has
been observed. Using the same terminology as in mathematical probability theory,
we will also writeµ(F |E) forµE(F) in the sequel. Ifµ(E) = 1, thenµE = µ and
µ(F |E) = µ(F) for all F ∈ E .

There is aσ -additive stateµ with µ(E) = 1 for each elementE 6= 0 in a
σ -UCP space, since from (UC1) we get aσ -stateν with ν(E) 6= 0, and then
chooseµ = νE.

(UC1) implies the uniqueness ofD in (OS6): E + D1 = F = E + D2,
thenµ(E)+ µ(D1) = µ(F) = µ(E)+ µ(D2) for all σ -additive statesµ, hence
µ(D1) = µ(D2) for all σ -additive statesµ andD1 = D2.
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Moreover, if E ≺ F and F ≺ E for E, F ∈ E , then E = F ; i.e., the rela-
tion≺ is antisymmetric: IfF = E + D1 andE = F + D2, thenµ(F) = µ(E)+
µ(D1) = µ(F)+ µ(D2)+ µ(D1), thereforeµ(D1) = µ(D2) = 0 for allσ -additive
statesµ, andD1 = D2 = 0 by (UC1). Note that the relation≺need not be transitive
so far. Furthermore,E⊥ E⇔ E⊥ I⇔ E = 0. (If E⊥ E, thenE⊥E + E′ = I
by (OS3,5). IfE⊥ I, thenE⊥ 0′ andE′ ⊥ 0, i.e.E ≺ 0 and 0≺ E, henceE = 0.)

In Niestegge (2001), the concepts ofstatistical predictability(state indepen-
dence of the conditional probability) andcompatibilityhave been introduced. The
adaptation of these concepts toσ -UCP spaces is straightforward, but not needed
for the purpose of this paper.

3. OBSERVABLES

An observable is supposed to be the analogue of a classical random variable
which is a measurable point functionf between two measurable spaces. With the
σ -UCP space model, there are no points, but only events. A closer look at classical
probability theory shows that the mapX allocating the eventf −1(E) to the eventE
is more essential to the theory thanf itself. The mapX is a homomorphism between
theσ -algebras of events. An observable is therefore defined as a homomorphism
between twoσ -orthospaces; similar but less general definitions of observables can
be found in the literature (Gudder, 1979; Pt´ak and Pulmannov´a, 1991; Varadarajan,
1968/70).

Definition 3.1. A mapX from aσ -orthospaceF to aσ -orthospaceE is called an
observableif

(i) X(I) = I,
(ii) X(E)⊥ X(F) in E for all pairsE, F ∈ F with E⊥ F , and
(iii) X(

∑∞
n=1 Fn) =∑∞n=1 X(Fn) for every sequence of mutually orthogonal

eventsFn in F .

Then X(0)= 0 and X(F ′) = X(F)′ for every F ∈ F . If µ is a σ -additive
state onE , a σ -additive stateµX is defined onF via µX(F) := µ(X(F));µX is
called the distribution ofX underµ.

The classicalσ -algebras and particularly the systemB of Borel-measurable
sets inR areσ -orthospaces. IfF = B, the observableX:B→ E is called areal-
valuedorR-valuedobservable onE , although it is a map fromB toE . The reason is
that we want to keep the notation in line with what is called a real-valued classical
random variable. Such an observableX is boundedif

‖X‖ := inf{r ≥ 0|X([−r, r ]) = I}
is finite. Now letOb(E , R) denote the set of all boundedR-valued observables on
E . Theexpectation valueof a real-valued observableX in aσ -additive stateµ on
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E is defined as

Expµ(X) :=
∫

t dµX,

if the measure integral exists. The integral always exists ifX is bounded.
With a real-valued observableX and a measurable functionf : R→ R, an-

other real-valued observableY is defined viaY(B) := X( f −1(B)) for B ∈ B; then
Expµ(Y) := ∫ f (t) dµX for anyσ -additive stateµ onE . This observableY is de-
noted byf (X) in the sequel. If| f | ≤ r for somer ≥ 0, then‖ f (X)‖ ≤ r . ThusXk

andsXare defined for any nonnegative integerk and any real numbers, and we have
‖Xk‖ = ‖X‖k and‖sX‖ = |s| ‖X‖. An observableχE ∈ Ob(E , R) is allocated to
eachE ∈ E via

χE(B) :=


E for 1 ∈ B and 0/∈ B

E′ for 1 /∈ B and 0∈ B

0 for 1 /∈ B and 0/∈ B

I for 1 ∈ B and 0∈ B

for B ∈ B. Then Expµ(χE) = µ(E) for everyσ -additive stateµ onE . Moreover,
if X is a real-valued obervable, thenχX(B) = I B(X), whereB is any Borel set and
I B is the indicator function withI B(t) = 1 for t ∈ B and I B(t) = 0 for t /∈ B.

The spectral measure of a self-adjoint operator on a complex or real Hilbert
space provides a real-valued observable in the sense of the above definition. The
one-to-one correspondence between the self-adjoint operators and their spectral
measures is the reason why quantum-mechanical observables are usually under-
stood as operators.

4. THREE FURTHER AXIOMS

A classicalσ -algebra is aσ -UCP space withµ(E|F)µ(F) = µ(E ∩ F) =
µ(F |E)µ(E). In the quantum-mechanical Hilbert space model, we haveµ(E|F)
µ(F) = Expµ(FEF) 6= Expµ(EFE) = µ(F |E)µ(E) (see Niestegge, 2001). In both
cases, however, the conditional probabilities satisfy the equationµ(E|F)µ(F)+
µ(E′|F ′)µ(F ′) = µ(F |E)µ(E)+ µ(F ′|E′)µ(E′), which becomes our first axiom
(A1) (see below).

Moreover, in both casesµ(E|F)µ(F) is identical with the expectation value
of a certain observable, this is the eventE ∩ F in the first case and the (spec-
tral measure of the) operatorFEF in the second case. This motivates the second
axiom (A2).

In the last section,Xk andsXcould be defined for a real-valued observable
X, but the sum of two real-valued observablesX andY is not defined. An addition
operation for observables is important for physical as well as mathematical reasons
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(e.g., for the formulation of a law of large numbers or a central limit theorem).
This brings us to the third axiom (A3).

Let E be aσ -UCP space.

(A1) µ(E|F)µ(F)+ µ(E′|F ′)µ(F ′) = µ(F |E)µ(E)+ µ(F ′|E′)µ(E′) for all
eventsE andF and allσ -additive statesµ onE .

(A2) For each pair of eventsE andF there is a bounded real-valued observable
UE(F) such thatµ(F |E)µ(E) = Expµ(UE(F)) for every σ -additive stateµ
onE .

(A3) For each pair of bounded real-valued observablesX and Y there is one
and only one bounded real-valued observableX + Y such that Expµ(X + Y) =
Expµ(X)+ Expµ(Y) for everyσ -additive stateµ onE .

Note that the sum of boundedR-valued observables (spectral measures of
bounded self-adjoint operators) exists in the quantum-mechanical model, but that
the sum of boundedC-valued observables (spectral measures of bounded normal
operators) does not exist (since the sum of normal operators is not normal unless the
operators commute). This means that theR-valued observables play a distinguished
role.

In the next three sections of this paper, it will now be proved step by step that
the system of bounded real-valued observables, equipped with this+-operation
and a multiplication operation that will be defined later on, forms a Jordan algebra.

5. THE ADDITION OPERATION

The axiom (A3) implies that the+ operation onOb(E , R) is commutative as
well as associative. ThusOb(E , R) becomes a real-linear space. The zero element
is 0 := χ0. Moreover, ifX, Y ∈ Ob(E , R) are such that Expµ(X) = Expµ(Y) holds
for all σ -additive statesµ on E , thenX = Y (which also implies the uniqueness
of UE(F) when (A2) and (A3) both hold). Ifg, f :R→ R are bounded measur-
able functions withh := g+ f , thenh(X) = g(X)+ f (X) for every real-valued
observableX.

Lemma. 5.1. LetE be aσ -UCP space.

(i) ‖X‖ = sup{| Expµ(X)| : µ is aσ -additive state onE} for X ∈ Ob(E, R).
(ii) If (A3) holds, then‖X + Y‖ ≤ ‖X‖ + ‖Y‖ and‖X2‖ ≤ ‖X2+ Y2‖ for

X, Y ∈ Ob(E , R).

Proof: (i) Obviously|Expµ(X)| ≤ ‖X‖ for all σ -additive statesµ onE . Letε >
0. Withs := ‖X‖ then eitherX([s− ε, s]) 6= 0 or X([−s,−s+ ε]) 6= 0 and there
is a σ -additive state µ on E such that eitherµX([s− ε, s])= 1 or
µX([−s,−s+ ε]) = 1. In both cases we get|Expµ(X)| ≥ ‖X‖ − ε. (ii) follows
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immediately from (i). Use Expµ(Y2) = ∫ s2 dµY ≥ 0 for the second inequality.
¤

Now let E be aσ -UCP space that satisfies (A3). ThenχE+F = χE + χF

for any two orthogonal eventsE and F in E . If Ej (1≤ j ≤ k) arek mutually
orthogonal events inE , the observable

k∑
j=1

t jχEj ∈ Ob(E , R)

with t j ∈ R is calledprimitive. It is identical with the observableX defined via

X(B) :=


∑
tl∈B

El for a Borel setB with 0 6∈ B,(
k∑

j=1
Ej

)′
+ ∑

tl∈B
El for a Borel setB with 0 ∈ B.

Therefore ∥∥∥∥ k∑
j=1

t jχEj

∥∥∥∥ = max{|t j | : 1≤ j ≤ k}.

Note that the sum of two primitive observables is not primitive in general.

Lemma. 5.2. LetE be aσ -UCP space where(A3) holds.

(i) The primitive observables are dense in the normed linear space Ob(E , R).
(ii) {X ∈ Ob(E , R) : ‖X‖ ≤ 1} is the closed convex hull of{χE − χF : E,

F ∈ E}.

Proof: (i) Let X ∈ Ob(E , R) with r := ‖X|. Now approximate the function
f (s) := s on [−r, r ] uniformly by a sequence of step functionsfn with a finite
number of steps each; thenfn(X) is a sequence of primitive observables with
‖X − fn(X)‖ → 0. (ii) From Lemma 5.1 (i) we get‖χE − χF‖ ≤ 1, and there-
fore ‖X‖ ≤ 1 for everyX in the closed convex hull. Now assume‖X‖ ≤ 1 and
approximate the functionf (s) := s on [−1, 1] uniformly by a sequence of func-
tions fn that are convex combinations of functions with values in{−1, 0, 1}. Then
fn(X) is a sequence of observables in the convex hull of{χE − χF : E, F ∈ E}
and converges toX. ¤

6. THE MULTIPLICATION OPERATION

Postulating the existence of the product of twoR-valued observablesX and
Y in the same way as the sum is not possible since Expµ(XY) = Expµ(X)Expµ(Y)
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does not even hold in the classical case (unlessX andY are uncorrelated under
µ). However, a multiplication operation will now be derived from (A1) and (A2).

Theorem 6.1. LetE be aσ -UCP space that satisfies(A1), (A2), and(A3). Then
there is a unique commutative multiplication operation◦with unit elementI := χI
on Ob(E , R) such that

(i) X ◦ (sY+ t Z) = s(X ◦ Y)+ t(X ◦ Z) for X, Y, Z ∈ Ob(E , R) and
s, t ∈ R,

(ii) ‖X ◦ Y‖ ≤ ‖X‖‖Y‖ for X, Y ∈ Ob(E , R),
(iii) χE ◦ χE = χE for E ∈ E , andχE ◦ χF = 0 for E, F ∈ E with E⊥ F.

Note that the multiplication operation◦ is not associative in general.

Proof: (1) Let E ∈ E . From (A2) we getUE(E) = χE = UE(I) = UI(E), and
UE(F) = 0 for F ∈ E with E⊥ F . We first define a certain extension ofUE to
linear combinations of theχF (F ∈ E):

ŨE(Y) :=
m∑

l=1

sl UE(Fl ) ∈ Ob(E , R) for Y =
m∑

l=1

slχFl .

Then

ExpµŨE(Y) = µ(E)
m∑

l=1

slµE(Fl ) = µ(E)ExpµE
Y

for anyσ -additive stateµ onE . Therefore,̃UE is well-defined (i.e., independent of
the special choice of the linear combination representingY) and linear on the linear
hull of {χF |F ∈ E}. Moreover, with Lemma 5.1 (i), we get:‖ŨE(Y)‖ ≤ ‖Y‖. We
now defineχE ◦ Y for E ∈ E andY in the linear hull of{χF |F ∈ E} via:

χE ◦ Y := 1

2
(Y + ŨE(Y)− ŨE′ (Y)).

This immediately implies (iii), and moreover:χE ◦ 0= 0 as well asχE ◦ I = χE.
Furthermore,χE ◦ Y is linear and continuous inY (with E fixed). (2) From (A1),
we get forE, F ∈ E :

UE(F)+UE′ (F
′) = UF (E)+UF ′ (E

′)

and then

2χE ◦ χF = χF +UE(F)−UE′ (F)

= χF +UF (E)+UF ′ (E
′)−UE′ (F

′)−UE′ (F)

= χF +UF (E)+ χF ′ −UF ′ (E)− χE′

= χE +UF (E)−UF ′ (E)

= 2χF ◦ χE.
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(3) We now defineX ◦ Y for both X andY in the linear hull of{χF |F ∈ E} with
X =∑k

j=1 t jχEj as

X ◦ Y :=
k∑

j=1

t j (χEj ◦ Y).

We have to make it sure thatX ◦ Y does not depend on the special choice of the
linear combination representingX. However, in the caseY = χF with F ∈ E , we
get from (2):X ◦ χF = χF ◦ X, which is well defined by (1). ThereforeX ◦ Y is
well-defined andX ◦ Y = Y ◦ X for all Y that are linear combinations of suchχF .
Moreover,X ◦ Y is continuous and linear inY with X fixed as well as inX with
Y fixed. We then get forE1, E2 ∈ E :

(χE1 − χE2) ◦ Y = 1

2

(
ŨE1(Y)− ŨE′1(Y)+ ŨE2(Y)− ŨE′2(Y)

)
.

Hence

‖(χE1 − χE2) ◦ Y‖ ≤ 2‖Y‖,
and, using Lemma 5.2 (ii):

‖X ◦ Y‖ ≤ 2‖X‖‖Y‖.
By Lemma 5.2, the linear hull of{χE|E ∈ E} is dense inOb(E , R), and the mul-
tiplication operation◦ has a unique continuous extension toOb(E , R) such that
(i) and (iii) are satisfied, butX ◦ Y may lie in the completion ofOb(E , R) and
not in Ob(E , R) itself for X, Y ∈ Ob(E , R). (4) For a primitive observableX, the
productX ◦ X is identical withX2 defined earlier asf (X) with f (s) := s2. This
follows from (i) and (iii). Therefore,X ◦ X = X2 for all X ∈ Ob(E , R); use the
same approximation ofX by primitive observables as in the proof of Lemma 5.2
(i) and the continuity of the multiplication operation◦. Then

X ◦ Y = 1

2
(X + Y)2− 1

2
X2− 1

2
Y2 ∈ Ob(E , R)

for X, Y ∈ Ob(E , R). Furthermore, the multiplication operation◦ is uniquely deter-
mined by this equation. (5) Since we have Expµ(X2) = ∫ s2dµX ≥ 0, the Cauchy–
Schwarz inequality holds for the bilinear formX, Y→ Expµ(X ◦ Y) onOb(E , R),
whereµ is anyσ -additive state onE . Then forX, Y ∈ Ob(E , R):

(Expµ(X ◦ Y))2 ≤ Expµ(X2)Expµ(Y2),

and by Lemma 5.1 (i):

‖X ◦ Y‖2 ≤ ‖X2‖‖Y2‖ = ‖X‖2‖Y‖2,

from which we get (ii). ¤
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With the multiplication operation of Theorem 6.1, we havef (X) ◦ g(X) =
h(X) with h := f g for any real-valued observableX and any bounded measurable
functions f, g onR. This can easily be proved by applying the equation 2X ◦ Y =
(X + Y)2− X2− Y2.

One may decline to take this equation as a definition of the product◦, using
the definition of the square from section 3 and to drop (A1) and (A2) as well as
(UC2). This is the so-called Segal product (Pulmannov´a, 1998; Segal, 1947). Then,
however, the distributive law ((i) in 6.1) cannot be proved (Sherman, 1956), which
is the reason why other authors postulate the distributive law for the product as
an extra axiom although a physically or statistically plausible justification for this
axiom is hard to find.

7. THE JORDAN PROPERTY

A Jordan algebra satisfies the conditionX ◦ (X2 ◦ Y) = X2 ◦ (X ◦ Y) for all
elementsX andY in the algebra. If a real algebra has a finite dimension and satisfies
some conditions which hold inOb(E , R), the Jordan condition becomes equivalent
to the condition that each element of the algebra lies in an associative subalgebra
(Jordanet al., 1934). InOb(E , R), an associative subalgebra containing a given
X is { f (X) : f is a bounded measurable function onR}. Therefore,Ob(E , R) is
a Jordan algebra if its dimension is finite. We shall now show thatOb(E , R) is
a Jordan algebra in the infinite-dimensional case as well, using the methods of
Jordanet al.(1934) where applicable. In Jordanet al.(1934), the finite dimension
is mainly needed to derive a spectral theorem. We are in the lucky situation to
have such a theorem already; this is Lemma 5.2 (i). Since observables are a kind
of abstract spectral measures, spectral theory becomes quite simple in our case.

Lemma. 7.1. Under the assumptions of Theorem 6.1, the identityχE ◦ (χF ◦
Y) = χF ◦ (χE ◦ Y) holds for any two orthogonal events E, F ∈ E and any Y∈
Ob(E , R); i.e. χE andχF operator-commute (Hanche-Olsen and Størmer, 1984).

For the proof of this lemma it is referred to Jordanet al. (1934).Ob(E , R)
satisfies all the assumptions needed there, and the finite dimension is not relevant
for this proof.

Theorem 7.2. Under the assumptions of Theorem 6.1, Ob(E , R) is a Jordan
algebra.

Proof: Because of Lemma 5.2 (i), it is sufficient to prove the identityX ◦ (X2 ◦
Y) = X2 ◦ (X ◦ Y) for X, Y ∈ Ob(E , R) with X being primitive. We therefore
consider

X =
n∑

k=1

tkχEk
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with mutually orthogonal eventsEk andtk ∈ R(1≤ k ≤ n). Then by Lemma 7.1,

X2 ◦ (X ◦ Y) =
n∑

k=1

n∑
l=1

t2
k tlχEk ◦ (χEl ◦ Y) =

n∑
k=1

n∑
l=1

t2
k tlχEl ◦ (χEk ◦ Y)

= X ◦ (X2 ◦ Y). ¤

The mapE→ χE provides an isomorphism formE onto the system of idem-
potent elements inOb(E , R), the completion of which becomes a so-called JB
algebra (Hanche-Olsen and Størmer, 1984). This finally implies that≺ is an or-
thomodular partial ordering. Moreover, since almost all JB algebras can be rep-
resented as a Jordan algebra of self-adjoint operators on a Hilbert space (Alfsen
et al., 1978; Hanche-Olsen and Størmer, 1984), we thus arrive very closely at the
standard Hilbert space model of quantum mechanics.

If the multiplication operation onOb(E , R) is associative, thenOb(E , R) is
isomorphic to an algebra of real-valued functions (Hanche-Olsen and Størmer,
1984) andE is a (σ -complete) Boolean lattice, i.e., an associative multiplication
operation reduces to the classical case.

8. CONCLUSIONS AND REMARKS

We have seen that theσ -UCP spaces and the axioms (A1), (A2), and (A3)
presented above provide an axiomatic approach to quantum mechanics, incorpo-
rating a statistical interpretation from the very beginning and leading to real Jordan
algebras. The structure theory of Jordan operator algebras finally provides the link
to the conventional Hilbert space orC∗-/W∗-formalism of quantum mechanics.

This approach includes the physically relevant types II and III von Neumann
algebras which are not covered by the purely logical approaches and it excludes
some physically irrelevant cases that the purely logical approaches are unable to
rule out. It is closer to Kolmogorov’s measure-theorectic access to classical proba-
bility theory than other approaches. The existence of the distributive multiplication
operation for the bounded real observables need not be postulated without a satisfy-
ing justification, but is derived from other postulates concerning certain properties
of the conditional probabilities and observables.

The connection between conditional probabilities (although the definition
does not coincide with our one) and real Jordan algebras was discovered by Gunson
(1967). His results were improved by Guz (1981), but only the finite events (sum of
a finite number of orthogonal minimal events) and their orthogonal complements
could be embedded in a Jordan algebra.

Guz also proposed an algebraic approach where 2 of his 11 axioms coincide
with (A1) and (A2). Axiom (A1) appeared for the first time and its possible inter-
pretation is discussed in (Alfsen and Shultz, 1979). Better known is axiom (A3)
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which is the major ingredient for the definition of the so-calledsum logics(Pták
and Pulmannov´a, 1991).
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